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Abstract
The Prairie Pothole Region (PPR), located in central NorthAmerica, is an important region
hydrologically and ecologically.Millions of wetlands,many containing ponds, are located here, and
they serve as habitats for various biota and breeding grounds forwaterfowl. They also provide carbon
sequestration, sediment and nutrient attenuation, andfloodwater storage. Landmodification and
climate change are threatening the PPR, andwater andwildlifemanagers face important conservation
decisions due to these threats.We developed predictive,multisite forecastingmodels using canonical
correlation analysis (CCA) for pond counts in the southeast PPR, the portion locatedwithin the
United States, to aid in these important decisions. These forecastmodels predict spring (May) and
summer (July) pond counts for each region (stratum) of theUnited States Fish andWildlife Service’s
pond andwaterfowl surveys using a suite of antecedent, large-scale climate variables and indices
including 500millibar heights, sea surface temperatures (SSTs), and PalmerDrought Severity Index
(PDSI).Models were developed to issue forecasts at the start of all precedingmonths beginning on
March 1st. Themodels were evaluated for their performance in a predictivemode by leave-one-out
cross-validation. Themodels exhibited good performance (R values above 0.6 forMay forecasts and
0.4 for July forecasts), with performance increasing as lead time decreased. This simple and versatile
modeling approach offers a robust tool for efficientmanagement and sustainability of ecology and
natural resources. It demonstrates the ability to use large-scale climate variables to predict a local
variable in a skilful way and could serve as an example to develop similarmodels for use in
management and conservation decisions in other regions and sectors of the environment.

1. Introduction

Encompassing nearly 800 000 km2 in North America
[1], the Prairie Pothole Region (PPR) is important
hydrologically and ecologically. It is the location of
over 2.5 million wetlands [2] which are located in
depressions, or potholes, left from the recession of the
Laurentide ice sheet in the Pleistocene epoch [3]. It is
the largest wetland complex inNorth America [4]. The
depressions sometimes contain ponds or lakes, ran-
ging in permanence from ephemeral to persistent, that

serve numerous environmental purposes. Colloquially
called the ‘duck factory’, it is a favorable habitat for the
yearly breeding of over 50% of the North American
duck population during spring and early summer [5].
Other biota, such as insects and riparian vegetation,
also call these potholes their home [1, 5, 6]. In addition
to being a very important habitat for various forms of
life, the wetlands also provide carbon sequestration,
sediment and nutrient attenuation, and floodwater
storage [7].
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Wildlife managers in the PPR must develop and
implement hunting and conservation rules and reg-
ulations and actions to preserve or maintain habitat.
These decisions become more complicated in the face
of threats to the ecosystems they manage. Near-term
threats include landmodification due to agriculture or
oil/gas well production and climate variability, and
longer-term threats include climate change. Managers
must respond to both, though near-term threats typi-
cally take priority for addressing within agency
resource constraints [8]. Complicating matters fur-
ther, much of the land in the United States portion of
the PPR is privately owned [9]. Thus, managers must
work closely with the private land owners and con-
vince them to enter conservation easements, typically
allocated by the Conservation Reserve Program. Addi-
tionally, the program is losing federal funding, further
hampering the process of allocating easements.

Agricultural modifications (e.g. tiling) and energy
development (e.g. oil/gas wells) are affecting the PPR
and have reduced the ecological productivity of the
region. These anthropogenic modifications can
diminish or drain wetlands entirely, alter their land-
scape, or introduce contaminants. Between 16% and
18% of the PPR was historically (circa 1850) covered
by wetlands, but up to 65% had been drained by the
mid-1980s, primarily due to agriculture [10]. Total
wetland area declined between 1997 and 2009 by
another 1.1%, or approximately 30 100 ha [2]. Wright
and Wimberly [11] found that there was a net loss of
528 ha of grassland from 2006 to 2011. Agricultural
modifications change the landscape, altering soil per-
meability, runoff pathways, and evapotranspiration
[12]. A United States Geological Survey evaluation
found that 34 of 48 water samples from the PPR were
contaminated with brine [13]. These modifications
decrease pond and wetland numbers and introduce
contaminants, therefore decreasing the area for viable
habitat of dependent species.

Average temperature and precipitation are
increasing in the region due to climate change [14],
and the region is experiencing much climate varia-
bility on both spatial and temporal scales [14–17]. The
region is highly sensitive to annual variation in
weather conditions, with these playing an integral role
in the hydrologic productivity of the region [18–20].
Summer rainfall in the southeast PPR is extremely
important because it can contribute approximately
half of the annual precipitation [16, 21]. Summer rain-
fall in the southeast PPR is projected to decrease [22]
therefore increasing the danger this region faces.

In the face of these multiple threats, managers in
the region must make informed choices on actions to
protect and manage wetlands and implement recrea-
tional regulations. Several conservation strategies are
undertaken to maintain and improve habitat, both
ponds and surrounding grasslands, in order to max-
imize waterfowl nesting success, and are timed within
a season to ensure that treatments do not adversely

affect migratory birds [23]. For example, light to mod-
erate grazing treatments are performed to ensure
proper nesting habitat for migratory waterfowl
[23, 24], and are conducted after 1 June to ensure
waterfowl are not disturbed by livestock [23, 25]. Simi-
larly, noxious weed control is administered to prevent
further degradation of grasslands and wetlands [23],
and haying/prescribed burns are executed after 1
August each season [23]. These decisions are made
while considering near-term threats, longer-term
threats, and agency resource constraints.

These management responses are on two distinct
time scales. First, there are month-to-month/year-to-
year actions that may include habitat restoration/
revegetation or management of invasive plants that
often respond to seasonal variability in temperature
and precipitation. Some decisions, such as determin-
ing hunting quotas, use information on prior year
hunting totals in addition to upcoming season fore-
casts. Managers often make decisions early in the year
on whether and where to implement these and other
actions, making the best use of their resources. Sec-
ond, there are longer-range planning decisions with
effects over multiple years, such as easements, inten-
ded to protect wetlands in the face of land use conver-
sion or agreements with landowners to apply
treatments such as those described above.

The focus of this work is on predictive models that
may help managers make decisions earlier in the year
regarding what actions to choose by providing longer
lead times on a sub-PPR scale in regions managers are
accustomed to working with. These decisions will
therefore be based on a better model of how obser-
vable, predictable atmospheric and hydroclimate
metrics relate to pond habitats.

We, therefore, develop predictive models that
forecast pond counts on a sub-PPR scale using a novel,
reduced-dimension approach based on principal
component analysis (PCA) and canonical correlation
analysis (CCA). These models have varying lead times
back to 1 March. Other available predictive models
make a single, regional pond count forecast, do not
include large-scale climate variables, make current-
year forecasts with only weeks of lead time, or some
combination thereof [26–28]. Multiple linear regres-
sion was used by Larson [26] to determine the amount
of pond count variability accounted for by local cli-
mate variables. The model used a suite of 10 pre-
dictors: previous year’s pond counts plus seasonal and
yearly averages of minimum/maximum temperature
and precipitation. However, most of these variables
were not available until May meaning forecasts would
be issued at that time. Sorenson et al [28] used simple
linear regression on pond and duck counts with con-
current May Palmer Drought Severity Index (PDSI).
Forecasts with this model can be issued after May
PDSI becomes available—approximately early June.
In a more recent study, multiple linear regression was
used on May pond count numbers from sub-regions
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of the PPR [27]. Variables included the preceding
year’s temperature and precipitation (May–April), the
previous year’s pond counts, a temperature and pre-
cipitation interaction term, and location (longitude
and latitude). Forecasts with this model can be issued
in early May. We seek to improve on these forecast
models by developing predictive models using a novel
approach not used previously for this purpose; the
models are informed by a suite of predictors including
large-scale climate indices, have lead times beginning
1 March (therefore providing longer lead time), and
forecast pond counts on a sub-PPR scale.

We begin by outlining the study region and data
incorporated in the work. Following that, we discuss
the methods involved in creating predictors, develop-
ing our predictive models, and evaluating model

performance. We conclude by providing results, com-
paring them to other similar models, and discussing
their relevance for decision-making.

2. Study region anddata

This study focuses on the southeast PPR [22] located
within the United States (SEPPR). We exclude the
portion that extends into Manitoba, Canada. This
region is drawn in a dashed line in figure 1. Data were
retrieved from various sources for this study (table 1).
We prioritized use of temporally concurrent and
spatially conterminous data.

Data for pond counts and duck populations were
retrieved from two surveys conducted by the United
States Fish andWildlife Service (USFWS). In May, the

Figure 1.Map of the north central United States with the southeast PPR (SEPPR), the region used for development of predictors,
shown in a dashed line. Regions (strata) from theUnited States Fish andWildlife Service (USFWS)Breeding andHabitat Survey used
for this study are outlined in green and filled in yellow/gold. These same strata and transects were used for theUSFWSWaterfowl
Production andHabitat Survey. State andCanadian province outlines are shown in lighter black lines. The inset shows the location of
the PPRwithinNorth America. The original surveymap can be found at https://migbirdapps.fws.gov/mbdc/databases/mas/
WBPHS_2010_strata_map.pdf.

Table 1.Datasets utilized in this study, the variables they provided, and the years they covered. See text for acronymdefinitions.

Dataset/source Variable(s) Temporal domain

USFWSWaterfowl Breeding andHabitat Survey (May) Pond count, waterfowl population 1955–2015

USFWSWaterfowl Production andHabitat Survey (July) Pond count, waterfowl population 1957–2003

IRIData Library Sea surface temperature (SST) anomalies 1896–2017

IRIData Library 500millibar height (500mb) anomalies 1949–2017

NOAANCEI nClimDiv PalmerDrought Severity Index (PDSI) 1895–2017
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Waterfowl Breeding and Habitat Survey is performed;
in July, the Waterfowl Production and Habitat Survey
was performed until 2003. Data for the May survey
span from 1955-present; data for years up to 2015 are
used for this study. Data for the July survey span from
1958 to 2003; all years of survey data are used for this
study. The survey consists of multiple subregions
(strata), and strata 43–49 were determined to be spa-
tially coincident with the SEPPR (figure 1).

Sea surface temperature (SST) anomalies and 500
millibar height (500 mb) anomalies were retrieved
from the International Research Institute’s (IRI) Data
Library which compiles raw data from various sources
into a common format. The SST anomaly data are a
concatenation of Kaplan et al [29] and Reynolds and
Smith [30]. The 500 mb anomaly data are from
National Oceanic and Atmospheric Administration’s
(NOAA) Climate Data Assimilation System I (CDAS-
1) data.

We retrieved PDSI data spanning from 1895 to
2017 from the NOAA National Centers for Environ-
mental Information (NCEI) nClimDiv dataset [31].
The data were retrieved on a monthly scale by climate
division. We chose 22 climate divisions to represent
the SEPPRbecause theywere spatially coincident.

May pond counts and duck population correlate
strongly (linear correlation has possible values of −1
to 1) with a linear correlation (Helsel and Hirsch [32],
Montgomery and Runger [33]) of 0.87 (figure 2). We
can infer duck population with pond count because of
this strong correlation, a connection that has been

well-documented [22, 34, 35]. July pond counts also
have high linear correlation with May pond counts
(0.78, figure 2) allowing us to extend ourmodeling fra-
mework to predict July pond counts.

This connection between variables, however,
comes with stipulations. Other factors such as wet-
land-cover type, emergent vegetation distribution and
characteristics, and interactions among ducks can
cause ducks to relocate [36]. Salinity of ponds also
plays a role, because the plant communities are sensi-
tive to the level of brine in ponds [37]. We acknowl-
edge these confounding factors exist, but rely on the
strong relationship for inferences.

Ponds and ducks have shown an increasing trend
in the SEPPR (figure 2). Ponds in the SEPPR are
increasing due largely to the increase in precipitation
in the PPR [14] which is in part due to increases in the
SEPPR in all seasons but summer [22]. Also attribu-
table are conservation efforts over the recent decades.
Duck counts have followed due to the observed rela-
tionship. Variability has increased slightly since the
beginning of the observed period. The cause for this is
an ongoing research area. Some potential explanations
include the increase in extreme events due to climate
change and effects due to land use conversion. Varia-
bility is expected to continue to increase in the
region [38].

Figure 2.Time series of scaled duck (triangles, green),May pond (circles, blue), and July pond (squares, black) aggregated counts for
strata 43–49 as recorded by theUSFWSBreeding andHabitat Survey. There is a strong correlation between all counts as indicated by
their similar temporalmovement.
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3.Methods

When forecasting one field of data with another, CCA
[39] is a common approach. It has been used for
multisite forecasting of precipitation (e.g. [40]), temp-
erature (e.g. [40], [41]), streamflow (e.g. Salas et al
2010), SSTs (e.g. [42]), and wind (e.g. [43]). In this
study, we use CCA to predict the field of pond counts
using a suite of developed predictors. First, we describe
how the suite of predictors was developed. This is
followed by a description of the CCA process used to
develop our predictive models. A more detailed
description of these processes can be found in
appendices A and B. We conclude this section with
details on how the models were evaluated on both fit
and skill.

3.1.Development of predictors
Pond count is physically linked to the amount of water
available—a function of groundwater storage, direct
precipitation, and snowmelt runoff [18]. This direct
connection to precipitation motivated exploratory
data analysis of the region’s precipitation (per climate
division). This analysis provided evidence that SEPPR
summer precipitation variability is driven by 500 mb
systems and SSTs in the Pacific and Atlantic Ocean,
and it has strong connections to PDSI. We performed
PCA [44] on the climate division summer precipita-
tion data tofind the leadingmodes of variability. These
modes were then found to be correlated to SST and
500 mb anomalies thus establishing connections to
these large-scale variables. It was also observed that
PDSI was correlated to the leading modes. Connec-
tions were found during wet and dry years as
determined by the leadingmode. Informed by this, we
use these three variables, developed into indices, as
predictors for use in our predictivemodels.

Reference [28] based their models on PDSI
because of its ability to serve as a single composite
measure of dryness. It is a widely used index which
estimates relative dryness based on current and ante-
cedent temperature and precipitation [45]. In our
models, it represents past local climate conditions.
Large-scale climate features such as 500 mb and SST
persist seasonally, thereby representing future
conditions.

We used regions of highest magnitude linear cor-
relation (Helsel and Hirsch [32], Montgomery and
Runger [33]) between May pond counts and space-
time fields of 500 mb and SST anomalies to develop
eight predictors (three SST, five 500 mb). The fields
were for the preceding winter (December–February),
March, and April. The high correlation between May
and July pond counts (figure 2) allowed us to use the
same predictors along with May pond counts for July
models.

Regional PDSI values from 22 climate divisions
representing the SEPPR were averaged to one value

per year for winter, March, and April resulting in three
PDSI predictors.

3.2. Predictivemodel
For our predictive model, PCA [44] is performed first
on the two datasets (pond counts and predictors); both
are scaled (by subtracting themean and dividing by the
standard deviation) prior to PCA. It is frequently used
alongside CCA as a dimension-reducing technique
because, typically, datasets used are large. Though our
datasets are not large, we include PCA to allow
managers to addmore strata or predictors making our
framework versatile.

The July survey contains missing values, across all
strata for some years (e.g. 1989) and for select strata
during specific years (e.g. 1958). Years in which data
for all strata were missing were removed for figure 2.
For CCA, years withmissing values in at least one stra-
tumwere removed.

After performing PCA, a user-defined number of
PCs (Npc) are retained for CCA. Then, CCA is per-
formed on the selected Npc to provide Npc canonical
component (CCs) pairs. Then, a regression is per-
formed with the sets of CCs allowing prediction ofNpc

from one dataset using the other. Finally, predicted
values (scaled) can be found by multiplying the eigen-
values (from PCA) for the appropriate dataset by the
predicted PCs to back transform then rescaled as
desired. For plotting purposes (figures 4, 6–8), they
were left scaled.

Pond count was chosen as the response variable
because it is dependent on physical processes thus
lowering the potential for confounding and hidden
variables. Duck population, however, is more depen-
dent on biological processes in addition to environ-
mental conditions therefore increasing the
confounding factors. The connection between the two
variables (figure 2) allows managers to infer duck
population based on pond count.

Models were developed forecasting both May and
July pond counts for individual strata at the start of all
preceding months beginning on 1 March. Predictors
were included based on availability related to forecast
date. For example, forecasts made on 1 April cannot
include predictors developed using concurrent April
SST. This resulted in a smaller suite of predictors for
earlier forecasts (longer lead time).

3.3.Model performance
Model fit and forecast skill aremeasured by calculating
the correlation coefficient, R, and root mean square
error, RMSE (Helsel and Hirsch [32], Montgomery
and Runger [33]). These two metrics, commonly used
to evaluate regression models, were chosen because
they provide a measure of contiguity between pre-
dicted and observed values—RMSE is a measure of
difference between the two, and R measures how
closely the two vary together. Formodel fit, all data are
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used to construct the model, predictions are made for
all years, and the observed values are compared to the
modeled values using R and RMSE. To test model
performance in a predictive mode (i.e. model skill),
leave-one-out cross-validation (LOOCV)was used.

In LOOCV, one of the observations is dropped.
Themodel is then fitted to the remaining observations
and the dropped value is predicted.We performed this
process chronologically, starting with the first year of
observations then ending with the last year, similar to
jackknife [46]. However, jackknife is typically used for
parameter estimation. R and RMSE were then calcu-
lated using all the LOOCV predictions and the
observed values.

4. Results

4.1.Modelfit
In general, models fit well for most strata. For theMay
pond count models, most R values were above 0.65,
even when forecasting in March (figure 3). The R
values for the July forecast models were mostly above
0.5 including models with the longest lead time
(figure 5). Strata with models that fit well were close to
the 1:1 line when plotting observed versus modeled
values (figures 4(a), (b), 6(a) and (b)) whereas the
poorly fitting strata displayed obvious outliers
(figures 4(c), (d), 6(c) and (d)). Stratum 47, located in

eastern North Dakota, fit worst for most models
(figures 3, 4(d), 5, 6(d)), and its fit was disparately low
in comparison. Stratum 45 (figures 3(a), 4(b)) and 43
(figures 5(a) and 6(b)), located in northern and
western North Dakota, fit poorly in May and July
forecast models, respectively, when forecasting in
March, but fit improved for the successive lead times.
For most strata, R increased and RMSE (not shown)
decreased with shorter lead time. The only exception
was stratum 47 in May forecast models which had
staticfitmetrics fromApril toMay lead times.

4.2. Cross-validation forecast skill
Model performance in LOOCV mode was similar to
fitted model results with a minor reduction in
performance. For May pond count forecasts, most R
values were above 0.6 and RMSE is below 1 (equivalent
to 1 standard deviation since the data is scaled),
including forecasting inMarch (figure 7). TheR values
for the July forecastmodels weremostly above 0.4, and
RMSE was mostly below 1 (figure 8). Stratum 47 again
performed weaker than other strata, and its forecast
skill was low regardless of lead time. Strata 45 and 43
performed poorly in May and July forecast models,
respectively, but forecast skill improved with lead
time. As with model fit, R increased and RMSE
decreased with shorter lead time for most strata.

Figure 3. Fittedmodel correlations for all three lead times—1March, 1 April, 1May—forMay forecasts plotted spatially by strata.
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Figure 4. Scatterplots ofmodeled versus observed pond counts (scaled) for selectMay forecastmodels for the best-performing and
worst-performing strata.

Figure 5. Fittedmodel correlations for all four lead times—1March, 1 April, 1May, 1 June—for July forecasts plotted spatially by
strata.
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Figure 6. Scatterplots ofmodeled versus observed pond counts (scaled) for select July forecastmodels for the best-performing and
worst-performing strata.

Figure 7.Correlation (R) andRootMean Square Error (RMSE) values for each lead time forMay forecastmodels in cross-validation
mode separated by strata.

Figure 8.R andRMSE values for each lead time for July forecastmodels in cross-validationmode separated by strata.
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Exceptions include stratum 47 in May models and
strata 47 and 48 in the Julymodels.

4.3. Comparison to other similarmodels
Our models provide longer lead times, forecast for
multiple strata, include large-scale variables, and
exhibit similar performance when compared to other
pond forecast models available. A common measure
of model skill is the variation explained by the model,
measured by the coefficient of determination, R2

(Helsel and Hirsch [32], Montgomery and Runger
[33]). Our May forecast models, from longest to
shortest lead time, explain 43%, 52%, and 58%
(median across strata) of pond count variation,
respectively. The July forecast models, from longest to
shortest lead time, explain 29%, 46%, 51%, and 56%
(median across strata) of pond count variation,
respectively. Individual strata R2 values can be seen in
table 2. Larson’s [26] best model explained 65% of
variation in percent basins holding water, and the
model given by Niemuth et al [27] explained 62% of
pond number variation Sorenson et al [28] were able
to explain 72% of May pond count variation using
only May PDSI. Generally, our shortest lead time
models perform similarly to these models, and the
variation explained remains strong with longer lead
time aside from the March forecast for July pond
counts.

Stratum 47 has lower R2 than other strata for both
models. Exploratory data analysis reveals one possible
explanation. There are two extreme years present
within the May pond data (figure 4(d)) and removing
these improves model performance. In the July data,
removing one extreme year also improves model per-
formance (figure 6(d)). Therefore, the models are not
capturing the extreme years.

5. Summary anddiscussion

We developed a suite of predictors for SEPPR pond
count informed by previous work investigating large-
scale climate links to summer precipitation in the
SEPPR. Using these predictors, we developed predic-
tive models using CCA that can provide relevant
information for SEPPR managers as they plan

conservation efforts such as determining hunting
quotas and the timing and location for rotational
grazing, prescribed burns, haying, and noxious weed
control.

In providing a better predictive tool, these models
can help managers make more informed choices for
actions to preserve and maintain habitat in the face of
near-term threats. This tool provides longer lead times
than currently available models and pond forecasts in
regions consistent with areas that managers use—the
survey strata. Managers may use our models for spa-
tially explicit forecasts of where pond habitat might be
better or worse (i.e. where there are fewer ponds and
therefore pond area), and thus inform their planning
at varying times in the seasonal decision-making pro-
cess. Additionally, these models use variables that
influence the climate variability of the region and cap-
ture seasonal climate information and trend. Captur-
ing this variability is important because managers are
very interested in the climate variability of the region
[8]. These models exhibit high skill exemplified by
high linear correlation values and low RMSE in
LOOCV mode. With a few exceptions, this skill
increased as lead time decreased.

Our CCA framework provides versatility that can
be adapted to accommodate needs and interests of
managers. Variables can easily be added (or removed)
to either dataset. For example, other strata could be
included for predictions as desired bymanagers. Other
variables, such as snowmelt, could be added to the pre-
dictor dataset to incorporate their information in the
model.

An important utility of these models lies in their
ability to provide information on ecological health
based on the strong connection between pond count
and duck population (figure 2). Managers must still be
mindful that duck population depends on other fac-
tors such as pond salinity (LaBaugh et al [47]), wet-
land-cover type, vegetation characteristics (also
dependent on salinity), and interactions among ducks
[36]. They should also be careful making these infer-
ences in strata with lower model skill, but broad infer-
ences can still be made with confidence. Further,
studies providing similar pond count models do not
include large-scale climate variables, have little lead

Table 2.Coefficient of determination,R2, values for allmodels and all strata.

Stratum43 Stratum44 Stratum45 Stratum46 Stratum47 Stratum48 Stratum49

May forecasts

March 43% 46% 24% 42% 29% 52% 47%

April 52% 52% 49% 60% 39% 66% 63%

May 58% 56% 51% 62% 37% 69% 64%

July forecasts

March 10% 27% 29% 35% 11% 47% 40%

April 26% 43% 46% 55% 17% 60% 58%

May 44% 51% 51% 60% 17% 60% 60%

June 45% 53% 56% 64% 18% 62% 61%
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time, do not forecast for individual strata, or a combi-
nation thereof.

This work has a broader impact because we
demonstrate the use of a powerful forecasting techni-
que, CCA, and how it might be used for management
decisions. This application could serve as an example
to develop similar models for use in other manage-
ment and conservation decisions in other regions of
the world and other sectors of environment. Further,
we demonstrate the ability to use large-scale climate
variables to predict a local variable (pond count) in a
skillful way. This method could be applied to other
variables, some of which were referenced previously.
We hope the technique will reach a different audience
than has been in previousworks.
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